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A ROBOT-BALANCER ON A CYLINDER? 

Yu. F. GOLUBEV 

The prohlcm ofctabilizing the equilibrium of a robot placed on a cylinder which can roll along a horizontal plane is investigated. 
There is no slip in any of the cxtcrnal contacts. Control is achicvcd by means of the elcctromcchanical angular acceleration of 
a Hywhccl on the rohot. Steady motions arc studied. The basic procedures for stahilizing the robot in a vertical position arc analysed 

in a non-linear formulation. It is shown that the corrc\ponding linear system is complctcly controllable. A coordinate and velocity 

controller with saturation is constructed. The domain in which the system can be stabilized is found in connection with the 
boundcdncss of the control function. The cffcct of mcasurcment errors is examined. The control charactcristicn arc calculated 
for certain actual robot parameters. 0 2003 Ekcvicr Ltd. All rights rcscrvcd. 

The problem of the active stabilization of mechanical systems in the neighbourhood of an unstable 
equilibrium position has numerous applications. Among these, we mention the problem of ensuring 
the equilibrium of an inverted pendulum. The need for its solution arises, in particular, when designing 
stable walking and running walking machines with a small number of feet. 

There are various methods of ensuring the stability of the equilibrium of an inverted pendulum, for 
example, by a suitable choice of the frequency of oscillation of the point of suspension [l, 21 or by 
controlling its horizontal displacement [3]. The principle for ensuring the equilibrium of an inverted 
physical pendulum by controlling the angular acceleration of a flywheel fixed to the pendulum using a 
cylindrical hinge has also been investigated [4-71, where the required rotation of the flywheel is produced 
by means of an electric motor fixed to the pendulum. 

Unlike the above-mentioned mechanical systems, the robot which is considered below does not have 
a directly hinged joint with the fixed, horizontal supporting plane but interacts with it through a 
horizontally-arranged, supporting circular cylinder. The robot is supported by the cylinder from below 
through a flat plate which ensures that there is no slip of the robot with respect to the cylinder and 
precludes the possibility of any tilting of the robot in the direction of the axis of the supporting cylinder. 
As a result, only plane-parallel motion of the robot in a vertical plane, perpendicular to the axis of the 
cylinder, is possible. In turn, there cannot be any slip of the cylinder on the supporting plane. The flywheel 
is a centrosymmetric body which is fixed at the centre of symmetry to the robot using a cylindrical hinge 
with an axis parallel to the axis of the supporting cylinder. The flywheel is driven by an electric motor 
fixed to the frame of the robot. Control is achieved by the electrical voltage on the windings of the motor. 
This system has three degrees of freedom, one of which (the angle of rotation of the flywheel) is directly 
controlled by the electric motor, while the other two (the angle of inclination of the robot to the 
horizontal plane and its rolling over the supporting cylinder) are unstable. 

I. THE EQUATIONS OF MOTION 

The phase DE is supported by uniform, horizontal right circular cylinder, the cross-section of which in 
the plane of the sketch is a circle with its centre at the point G (Fig. 1). The supporting cylinder G has 
a radius R, a mass mu and a central moment of inertia Jo. It lies on the horizontal plane and can roll 
along it without slip. The plant DE can roll along the supporting cylinder without slip. A rod is rigidly 
fixed perpendicular to the plate at the point 0’. A flywheel of mass m, which can be rotated through 
an angle cp with respect to the rod, is fixed to the rod at the point B, which is a distance 1 from the plate. 
The centre of mass of the flywheel is located at the point B and its central moment of inertia is equal 
to J,,,. The flywheel is set in motion by an electric drive. The reduction coefficient from the flywheel to 
the rotor of the electric motor is equal to y and the moment of inertia of the rotor is equal to J,. The 
overall centre of mass of the plate DE and the rod O’B, together with any components fixed to them, 
lies at the point C and the rod O’B. The distance O’C is equal to a. The overall mass of the plate DE 
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Fig. 1 

and the rod O’B, together with the components fixed to them, is equal to M and their total central 
moment of inertia is equal to J 

The angle between the plane of the plate DE and the supporting horizontal plane is denoted by a. 
We now consider the cross-section of the supporting cylinder in the plane of the sketch (Fig. 1). This 
cross-section is bounded by the circle 3 with its centre at the point G. Suppose I3 is the angle between 
the direction from G to a certain fixed point of the circumference of L!? and the direction from G to 
the point of contact of the segment DE with this circumference. We shall assume that, when a = p = 
0, the rod O’B, which is held in a vertical position, is projected onto the point of contact of the cylinder 
with the plane. The origin 0 of the fixed system of coordinates Oyz coincides with the point of support 
of the cylinder on the horizontal plane when a = p = 0. The @ axis is directed horizontally and the 
Oz axis vertically as shown in Fig. 1. In the system of coordinate O’y’z’, associated with rotor, the O’y’ 
axis is directed along the segment DE towards the point E and the 0’2’ axis is directed along the segment 
O’B towards the point B. 

On taking account of the notation introduced, the absolute coordinates (yO, za) of the point O’, (yb, zb) 
of the point B and (yc, z,) of the point C can be expressed by the formulae 

y. = -R[a+sincx-fi(l+cosa)], za = R(l+cosa+/3sina) 

yb = yo- /sina, zb = z0 + lcosa (1.1) 
y, = y,-asinol, z, = za+ucos01 

On taking into account that tl~ = a - I3 is the angle of rotation of the supporting cylinder, the kinetic 
energy of the system can be represented as follows: 

where 

a’ aa = 2b( 1 + cosu) + c(p2 + 2Psina) + d 

aCa = 2c( 1 + cosol) + e, acpcp = J, + y2J, 

aab ’ = k(1 +cosa)+cpsina+e, au,+, = J,+yJ, 

b = R(M+m)(R+z:), c = (M+m)R2 

d = Ma2+m12+J+J,+J,+e, e = J,+m,R2 

k = R(M+m)(2R+z:), zl = (aM+lm)l(M+m) 

(1.3) 
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The power function of the system has the form 

U = -{[bcosa + c( 1 + psina)] (1.4) 

where g is the acceleration due to gravity. 
We now select the angles a, p and cp as Lagrangian coordinates and set up the system of Lagrange 

differential equations of the second kind 

ahaCt - ~$3 = - uacp@ + Z 
! > 
ck2 + $ - 2c(p + sina)&p 

-a&i + ubplj = (c/3 - Z)ci2 + 2c@sincl- Fsina (1.5) 

a,,& + a,p,p’i, = Q, Z = bsina- cpcosa 

Here Q is the generalized force which operates on changing the angle cp. 
The function 

expresses the effect of the flywheel on the motion of the system. For y* = -j, we havef(y*) = 0. This 
is the unique root of the functionf(y). When 

the functionf(y) reaches a minimum and, when 

y=y2=-j+Jmj 

it reaches a maximum, whereupon 

YI < Y* < 0 < Y29 minf(y) = f(rl) = 7&Y maf(y) = f(Y2) = T& 
1 

Moreover, 
lim f(y) = +O, lim f(y) = -0 

y-k+- Y’-- 

The values of the maximum and minimum off(y) can be controlled by means of a suitable choice of 
the moments of inertia of the flywheel and the rotor of the motor. For instance, if the ratio of the moment 
of inertia of the flywheel to the moment of inertia of the rotor of the motor is increased, thenf(y) + 
1 andf(y) + -0, and, theoretically minf(y), can be made as small in absolute magnitude as desired. 

When y* < y c y2, the functionf(y) increases monotonically from the valuef(f) = 0 up to the value 
f(y2) > 1. The extreme point y of the indicated range of variation of y has to be excluded since, when 
y = y, the effect of the control on the angles a and p of system (1.5) is lost. 

By varying the magnitude of ii, in a suitable manner, it is possible to ensure different states of motion 
of the robot as a whole, We will now consider some special cases. 

1. We require, for example, that the angle a should be constant during the whole time of motion 
(ix = 0). The first two eq uations of (1.5) take the form 

-ahpS = - aacpii) + iTZ, a = JE!$ 

The first of these equations serves as a matching condition for determining the function @, and it follows 
from the second equation that, when a > 0, the angle p will change in a uniformly retarded manner 
(the supporting cylinder in Fig. 1 moves with a constant positive angular acceleration, the plate DE has 
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an acceleration which is directed downwards and the acceleration of the point of contact of the plate 
with the supporting cylinder, taken relative to the plate, is directed upwards). When a > 0, the angle 
p will change in a uniformly accelerated manner (the supporting cylinder in Fig. 1 moves with a constant 
negative angular acceleration, the plate DE, as before, has an acceleration which is directed downwards, 
while the acceleration of the point of contact of the plate with the supporting cylinder, taken relative 
to the plate, is directed upwards). 

Hence, by choosing suitable value of ~1, it is possible to ensure control of the relative position of the 
point of contact of the plate DE and the supporting cylinder. For example, if it is required to approach 
an indicated point of contact to the line BO’ (Fig. 1) then, when p > 0 (the point of contact has a negative 
abscissa in O’y’z’ axes), it is necessary to choose a > 0 but, in the case when p < 0 (the point of contact 
has a positive abscissa in the O’y’z’ axes), it is sufficient to take a < 0. 

2. If CI = 0, it is found that p = 0. This means that the plate DE, being horizontal, is uniformly displaced 
to the right or to the left with a constant initial velocity and the supporting cylinder executes a 
corresponding degenerate motion. In the case, the matching condition takes the form 

that is, the angular acceleration of the flywheel must be proportional to the magnitude of 0 and will 
be constant if p is constant. In particular, it will be equal to zero if p = 0. 

3. It is clear from what has been said above that, when Q = 0, motion according to the law 

Ci=O, p30, @=const 

will be steady motion of the system. An attempt to make this motion stable can be made by choosing 
the corresponding angular acceleration control $I. 

4. The transition from one constant value of a to another constant value can be purposefully achieved 
by specifying the function C.(t) in a special way. Such conditions in conjunction with the states corres- 
ponding to case 1 can turn out to be useful in ensuring stable motion of the system in the neighbour- 
hood of a stationary point. If ci(t) is a specified function of time, then, as previously, the first equation 
of (1.5) gives the matching condition and the second equation completely defines the variation of the 
angle 0. Moreover, this equation can be rewritten in the form 

. . 
$jpP = cP[(l + cosa)&2 + Bsinol] + 

+ 
( 
2cixfi - bCt2 - $ sina + [k( 1 + cosol) + e]& 

1 U.6) 

It is found to be linear with respect to p with coefficients which depend on time in a known manner. 
We will specify the variation of the angle a in a small neighbourhood of the values a = 15 = 0 using 

the equation 
ti+02a = 0 (1.7) 

which denotes harmonic swinging of the plate DE about the horizontal position. This relation can be 
used for the transfer of the robot from one inclined position to another. 

In Eq. (1.6) we take account of equality (1.7) and neglect terms greater than the second order 
infinitesimals in a, &, &. We then obtain 

(4c+e)b = -p+(2k+e)b (1.8) 

Suppose the values P(to) = PO, &to) = b 0, are realized at the instant of time to of the start of the transfer 
of the plate from a position with an angle of inclination a(to) = @ and an angular velocity &(to) = 0. 
The corresponding equation of motion (1.8) takes the form 

p-p0 = 1 
( 

35+2k+f? (a-a,)+(t-to>po 
4c+e ~~2 > (1.9) 
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We shall assume that the equalities a(t,) = -a0 and &(t,) = 0 have to be ensured at the final instant 
of time t, of the transfer of the plate into the second inclined position. When account is taken of the 
fact that tl - to = rc/o, from relation (1.9) we find an approximate formula for the increment in the 
angle l3 during the time of the manoeuvre 

P(t,) - PO = - 2cx,,$--(5 + 2k + e) + ‘+ (1.10) 

It is clear that the effect of the term associated with the angular velocity PO can be made as small as 
desired by increasing o (reducing the transition time) while it is impossible to make the term containing 
cr, as small as desired in this way. The amplitude of the manoeuvre with respect to a affects it, increasing 
the absolute magnitude of the inclination p. Revolving manoeuvres with too large an amplitude of the 
angle a may not always turn out to be acceptable on account of the brushing the plate against the floor. 

The necessity for the manoeuvre indicated arises, for example, if, at a certain instant of time to, it 
turns out that 

%J>o, PO<07 PO<0 

This means that the plate DE has descended too low and it can only get back to the equilibrium position 
by turning it over such that the values of a become negative. The case when 

is analogous. 

ol,<o, PO>09 PO>0 

2. A LINEAR SYSTEM 

We will now consider the equations of the linear approximation in 
a = 0, p = 0 

the neighbourhood of the solution 

aaae - aQ$ + Q,(@ = $bcc - cp>, 
a,,ii,+a,,Ji = Q 

(2.1) 

where 

a aa = 4b+d, a,p = 2(b+c)+e, apP = 4c+e (2.2) 

Suppose the system is not controlled: Q = 0. One of the roots of the characteristic equations of the 
control system ht = 0. The other two roots are found from the quadratic equation 

2 2 

Aoh + g+(2ca,p - bag,+ - - = g c aw 0 
R2 

(2.3) 

where 

A = u,,u~~-~~~ = 4R2[Mm(l-a)2+(M+m)(J+ J,+ Ju)]t 

t (Ma2 + ml2 t J t J, + J,)(J, + moR2) 

A0 is the determinant of the kinetic energy matrix of the system and A is the determinant of the first 
two equations of system (2.1), which is non-zero for any non-zero robot parameters. 

We see that A0 depends quadratically on the reduction coefficient ‘y: 

Ao = J,(A - J&Y’ - 2J,J,a@‘t J,(A - J,agp) 
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The discriminant 9 of this quadratic trinomial has the form 

9 = -J,J,A{4R2[Mm(l -u)2 + (M + m)J] + (Mu2 + ml2 + J)e} -c 0 

Hence, A, > 0 for any values of the robot parameters. Consequently, Eq. (2.3) has a single negative 
root: h2 c 0 and a single positive root: A3 > 0. On the whole, when there is not control, system (2.1) 
has a single neutral principal coordinate which is obviously associated with the existence of the flywheel, 
a single stable principal coordinate and a single unstable coordinate. One of the characteristic exponents 
is positive, three of them have a real part equal to zero and one is negative. This distinguishes the system 
under consideration from those studied earlier [7]. 

System (2.1) can be solved for I? and p and reduced to the form 

where U is expressed by the formula 

(2.4) 

(2.5) 

and can, at this stage of the investigation, be considered as the control of the system. 

3. SYNTHESIS OF THE CONTROL LAW 

Taking ii as the control, we will investigate the properties of the controllability of system (2.4) (2.5) 
with respect to the variables a, p and Cp. For this purpose, we will represent it in the standard form 

t = dx+cJilii (3.1) 

where 

a 0 0 100 0 
P 0 0010 0 

x= &, d= a3, 0 0 0 0 , 93 = b, 

P q1 0 0 0 0 64 

cp Q51 a52 0 0 0 b5 

@%j3 
a31 = -RL\’ a41 = - 

gcaaa gb gc 
--, /(A 91 = Ra,p’ a52 = -Rn,p 

b, = -'f, b, = mu!!, b, = 1 
U acp 

For the controllability matrix ‘?l = ($8, ti%, ,@I’%, &8, d4?J3) [8], we find 

de& = -b&52(b3u,, - b,u3,)3 

where 

b3U4, -be,, = ~(uppu,,-& = -$o 

Consequently, in the case of an unbounded U, system (3.1) possesses the property of total controllability. 
We shall take U in the form [9] 

ii = Kla+ic2P+K3ci+K4j3+K5@ (3.2) 
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such that the equilibrium position becomes asymptotically stable with respect to the coordinates a, l3 
and Cp. The linear system (3.1) is then written as follows: 

bi = (U31 + K,b,)Ct + K2b3P + K,b,& + K4b3fi + K5b3@ 

P = (a,, + K,b,)Ct + K2b4P + K,b,h + K4b,fi + tc5b,$ (3.3) 

ii, = (asI + K,b,)a + (u5* + &b,)P + K&ii + K4b$ + Ksb& 

and the corresponding characteristic equation takes the form 

h5 + a,h4 + a2h3 + a3h2 + a,h + a5 = 0 
where 

a1 = C13K3 + C14K4 + C15K5, a2 = C21KI + q9K2 + C20 

a3 = C34K4+C35K5, a4 = C42K2, a5 = C55K5 

and 

(3.4) 

(3.5) 

c,3 = c2, = -b, = ‘f, c,4 = c2.2 = -6, = y 

gcaap -- 
c20 = -a31 - RA ’ cl5 = -6, = -1 

‘acp 

cj4 = c4= = a3,b4-a4,b3 = -FA, 
g=c= 

c55 = a52c34 = ~ 
R=Aa,, 

c35 = a,,b, -a,,b, -a5,b3 = 
g(be - 2ce - 4c=) 

RAaaq 

(3.6) 

On solving equalities (3.5) for the coefficients Ki, we find 

K, = d,,a, +d,4a4-d,o, K2 = -dNa4, K3 = d3,a, +d33a3 +d35a5 

K4 = - d4,a3 + d,,a,, K5 = d5,a5 

where 

(3.7) 

d,, = d,, = 4, d,4 = d33 
Rasp A =-, d gcaap 

9P gcalv 
10 = - 

RaSB 

d,, = d,, = -, RA d,, = & 
A _ (be - 2ce - 4c2)aap 

gc g2c2q3a C I (3.8) 

d45 = (be - 2ce -4c2)RzA, d = R2aa,A 
g2c3 

55 - 
g=c= 

In order to guarantee the asymptotic stability of the transient, it is sufficient to choose the roots hi 
of the characteristic equation (3.4) as follows: 

h, < h, < h, < h, < h, < 0 (3.9) 

The coefficients of the characteristic equation with these roots are found using Newton’s binomial rule 

5 4 5 3 4 5 

a, = -C hi, a2 = C hi C lj, a3 = -C  hi C  hj C 'k 

j=l i=l j=i+l 

2 3 4 5 

i=l j=i+l k=j+l 

i= I j=i+l k=j+l n=k+l 

and the coefficients of the control law (3.2) can be calculated using formulae (3.7). 
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4. ELECTRIC DRIVE CONTROL 

We will now consider the third equation of system (2.1). In this equation, the right-hand side is the 
moment of the electromagnetic forces applied to the rotor of the electric motor. We take [IO] the 
approximate value of the quantity & 

Q = c,u-c2@ (4.1) 

The constants cl > 0 and c2 > 0 are found using the technical and operational data for the drive, allowing 
for the reduction coefficient. The electrical voltage is bounded in magnitude: u,, c u c Us,. 

On substituting the quantity B taken from the first equation of (2.4) and the quantity Cc, found from 
Eq. (2.5) into the third equation of system (2.1) we establish the link between u and U 

Au+Ba-CD = clu-c& (4.2) 
where 

*0 
A=- 

%q* 

) c - gcaw 
Raa, 

The determinant A,, > 0 occurs in the numerator of the expression of the coefficientA, and therefore 
A > 0 for any values of the system paramctcrs. 

We substitute expression (3.2) for U into Eq. (4.2) and use the notation 

V = k,or+k,P+k,dc+k,p+k,$ (4.3) 

where 

k, = 
AK,+B AK~-C 
-, k,=- 

Cl Cl 

, k3zAA 
Cl 

k,=“K4, k,=---- A$ + C2 

Cl Cl 

(4.4) 

We now specify the law for the voltage fed to the motor 

1 

-Ug, v<-u, 

U= u = v, )VI<u, (4.5) 

UOT v > u. 

The occurrence of some kind of non-zero amplification factor k, in expression (4.3) indicates the need 
to measure the corresponding phase coordinate. We will now analyse the possibility that each of the 
coefficients k, vanishes. We start from the coefficient k,. When account is taken of the positiveness of 
a2 and u4, it follows from the first formula of (4.4) and the expressions for K] in formulae (3.7) and for 
the coefficients tit: and dtl in (3.X) that the possibility of the coefficient k, vanishing depends on the 
sign of the expresston Adto + B. On carrying out a transformation taking account of relations (2.2) we 
find 

-Ad,, + B = 
mpqmpp - ca,p 1 

Rawa$$ 

= Ayv+Jb-cw+4>0 

Rawa!w 

It is clear from this that, in the cast of real roots h, which satisfy (3.9) the coefficient k, cannot vanish 
for any values of the system parameters. Similarly, since aj > 0, k? also cannot vanish. 

As far as the coefficients k3 and k4 are concerned, they cannot simultaneously be made equal to zero. 
We will now show that this is so. We will assume that the condition k3 = k4 = 0 is satisfied. This is 
equivalent to the system of equations 

d,,a, + d,,a, + d,,a, = 0, -d,,a, + dd5a, = 0 

Expressing a3 from the second equation of this system and substituting it into the first equation, we 
obtain 

ha, + 
d45d33 
- d 

+d 
R2A2 

35 a5 = d3,a, + -a 5 
43 g2c2app 
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All the coefficients in this last expression are found to be positive and it cannot vanish. It is therefore 
necessary to consider the cases when either kg = 0 or k3 = 0. 

The coefficient b in the expression for dds in formulae (3.8) depends on the coordinate zi of the centre 
of mass of the robot (see (1.3)). If the value of 2: is small (a short robot), then dds < 0. But, then, 
d3.j > 0 and neither of the coefficients k3, k4 can vanish. We now use the notation 

i) = R l+4R2(M+m) 
J, + m,R* 1 

If z: = i:, then d15 = 0 and at the same time it is found that dj5 > 0. Consequently, when z: = S:, it 
is impossible for the coefficients ki and k3 to be equal to zero as previously. When there is an increase 
in z,: > j:, the coefficient dJ5 becomes positive and it is now possible to make the coefficient k4 equal 
to zero. Hence, the condition 

z: > i: (4.6) 

constrains the height of the robot from below and enables one to avoid having to measure the 
parameter p. 

Finally, the coefficient ks cannot vanish on account of the fact that a5 > 0 and d55 > 0. 
Suppose condition (4.6) is satisfied. Then, the roots of the characteristic equation (3.4) can be selected 

in the following way. We arbitrarily take tivc real numbers h, which satisfy the condition 
- - - - 

h,<h*<hj<Lf<h5<0 (4.7) 

and, using formulae (3.10) we find the values of U; and Ni corresponding to them. We choose the roots 
of the characteristic equation (3.4) in the form 

h; = Xiii, i = 1, . ..) 5 

The requirement that k4 = 0 and 2 # 0 leads to the equation 

Whereupon WC hnd that 

(4.8) 

After carrying out the procedure indicated above WC have 

k,c, >o, k*c,<O, k,c,>O, k, = 0, k,c,>O 

5. THE DOMAIN OF STABILIZABILITY 

The control with saturation (4.5) implies a contraction of the domain of controllability. We will now 
investigate the possibility of control with respect to the coordinates a and l3. In order to determine the 
corresponding domain of controllability, we take the system of equations (2.1) and substitute the 
expression for the generalized force (4.1) into it. We then eliminate ii, from the first equation and consider 
the first two equations of the system 

2 

i 1 %a - a,!f 
aw 

ti-a($$ = $m-cp)+u. -a,p+appij = +x 

where 
U = uacp(c2+ - c, u)/aqq 

At each fixed instant of time the control U can take values from the range 

(5.1) 

(54 
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We shall understand the controllability of system (5.1) to be the possibility of bringing its phase point 
to the origin of the coordinates of phase space, that is, to the point with coordinates a = tx = p = p = 
0. In order to investigate the stabilizability, we will consider the properties of a homogeneous system 
which corresponds to system (5.1). Its characteristic equation is identical to (2.3) and has one positive 
and one negative root. We note that, if the coefficient dJ5 in formulae (3.8) is positive, then the positive 
root will be the greater in absolute magnitude but, if & turns out to be negative, then the negative 
root will be the greater in absolute magnitude. However, there are no system parameters for which any 
of the roots is equal to zero. We denote the roots of Eq. (2.3) by pl < 0, u2 > 0. 

The eigenvectors of the homogeneous system being considered have the coordinates 

011 = P1q3p9 PI = PlQ3 -F/R 
a2 = P293p7 P2 = P2a,p -gclR 

After transforming the coordinates to eigenvectors, system (5.1) changes into the following system 

Cl = j.LJq +u1, if2 = cL252+u2 (5.4) 

where the controls 
Ul = Ua, = Up,app, u2 = Uol, = lJp2app 

are bounded in magnitude: 
Ul- 5 Ul 5 Ul+. u2- 5 u2 I u2+ 

where 
Ulf = U,CLlqq3~ U2f = 4P293p (5.5) 

The first equation of system (5.4) corresponds to a negative eigenvalue ul. In the case of constant 
control, these phase trajectories are ellipses. From any point in phase space, it is possible to transfer 
the phase point of the first equation to the origin of its phase plane by selecting a control in the range 
ul- d u1 d ul+ in a suitable manner. 

The second equation of (5.4) corresponds to the positive eigenvalue u2. For the constant control u2, 
its phase trajectories are hyperbolae with asymptotes 

(2 = f&(5242); 27, = -4P2 

We take any numbers u- and u+ such that 

u-<o<u+ 

and investigate the possibility of transferring the system described by the equation 

&,,c = u, u-IUIU, (5.6) 

from different initial phase points to the origin of the phase plane using a bang-bang control of the 
form 

u-+u+ u---u, u=-f- 
2 2 (5.7) 

If we put u = U-, the phase hyperbolae for (5.6) are given by the equation 

p2(l$iQ2-C2 = p-, ii- = -uJp2 (5.8) 

but, if we put u = u+, the analogous equation takes the form 

p2(k - ii+>2- 6” = p+, ii, = -u+Ip2 (5.9) 

wherep- andp, are integration constants and U, < 0 < UL 
Initially, we separate out the domain of initial conditions which satisfy the inequalities 

(5.10) 
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If the initial point lies in this domain and the control u = 11~ is maintained, then motion of the phase 
point occurs along the corresponding hyperbola (5.8) towards the abscissa, and the phase trajectory 
intersects the abscissa at a point with the coordinate 

and then departs to infinity. If the control u = U+ is taken with the same initial conditions, motion will 
also take place towards the abscissa, but now along a hyperbola of the form of (5.9), and the coordinate 
k+ of the point of intersection of this hyperbola with the abscissa is expressed as follows 

2 .2 112 
5, = [(&j-U+) -WC121 + u+ 

It can be shown? that 

5+2 5- (5.11) 

Inequality (5.11) confirms the fact that it is impossible to transfer a phase trajectory which starts out 
in the domain (5.10) to the origin of the coordinates for any control 14 E [UL, ~4+]. 

Trajectories which begin in the domain described by the inequalities 

ho->-fi&-u-,, (020 

also cannot be transferred to the origin of coordinates. For any control LI E [u-, u,], they depart to 
infinity. 

Similarly, the domain of initial conditions 

&Go - E+) ’ (0 

does not satisfy the requirement of stabilizability. 
We will now show that it is possible to construct a bang-bang control (5.7) which transfers the phase 

trajectory to the origin of coordinates from any initial point in the domain 

-?&(50 - 6,) < 40 < -&&o-K) (5.12) 

For this purpose we formulate the switching line 

&(S) = 
{ 

6-t 5<0 
-CT+, 520’ 

6, = {p2[(5-ii*)2-ii:l~1’2 (5.13) 

and synthesize the equation which transfers any phase point from the domain (5.12) to the origin of 
coordinates 

Hence, the system described by Eq. (5.6) with the constant bounds IAL and u+, can be stabilized if and 
only if its phase point belongs to the domain (5.12). 

The bang-bang control which has been presented only proves that it is possible to stabilize the system. 
In the case of an actual control, it is advisable to use functions u(t) which do not reach the boundaries 
of the domain of permissible values. 

The second equation of (5.4) differs from Eq. (5.6) which has been considered in that the bounds 
LIP- and 142+ are not constant but depend on the angular velocity Cp. When Cp changes, the range of 
permissible values of the control function is shifted as a whole in one direction or the other depending 
on the sign of +. 

SOLUBEV, Yu. F.. A Robot - B;danccr. Preprint No. 50. Inst. Prikl. Mat.. Moscow. 2002. 
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We now indicate the boundaries of the domain of stabilizability for the case when the flywheel is not 
rotating. They are of interest in relation to the fact that bringing the system into an equilibrium position, 
subject to the condition that the angular velocity of the flywheel tends to zero, serves as the aim of the 
control. In formulae (5.5) we put @ = 0. Then 

u- = -(I+ = ~%lc~luO , 
aw 

l.$- = -u2+ = - nwICIIUop2ap~ 

aw 

Now, on making use of inequality (5.12) and changing from the principal to the initial coordinates, we 
find the domain of stabilizability of system (5.1) 

(5.14) 

where 

PI~%Jql ap = (Pz - P,)sl+acpq3p’ aa = $(aaf3-$) 

6. THE EFFECT OF ERRORS 

The measurement errors depend on the sensors used in the system. We shall assume that the measurements 
are made using a fixed telecamera located in the frontal plane outside the robot which regards the 
position of some section rigidly associated with the robot. Let this section be a part of the straight line 
O’B shown in Fig. 1. Then, in the axes associated with the robot, the terminal points of this section N, 
and N2, should have coordinates (0, z;) and (0,~;) (2; > z; > 0), respectively. We choose the Ox axis 
to complete the system of coordinates Oyz to a right-handed trihedral. Assuming that the coordinates 
of the points N1 and N2 are measured without errors and shifting the origin of the coordinates into the 
picture plane of the telecamera, we find, in accordance with formulae (l.l), the absolute coordinates 
of the ends of the section being measured 

Yfi = y. - zi sina, 2, = z. + zkcosa, x, = 42, n = 1,2 (6.1) 

where h is the distance from the picture plane of the telecamera to the plane of the motion. The picture 
plane must be placed strictly parallel to the plane of motion of the robot. In reality, it will be set up 
with errors, the action of which is expressed by the matrix of small rotations 

1 4, 6, 

fi = 6, 1 -6, 
-6, 6, 1 

As a result, the images of the points N, (n = 1,2) in the matrix of the telecamera will have the following 
points respectively 

yi = k[y, - zisina + 6,h + 6,(zo + z:cosa)] 

Z:: = k[-6,(y,-zisina)-6,h+z,+z~cosal, n = 1,2 (64 

where k is the contraction coefficient of the image in the telecamera matrix. 
The subsequent analysis of the structure of the errors must rely on the actual processing algorithm 

taking account of the discretization of the image. Here, we shall assume that the images of the points 
N,, (n = 1, 2) in the telecamera matrix are correctly identified and we take the simplest algorithm for 
determining the angles a and p. From relations (6.2), we find 

Yr-y;=- sina + 6,cosa 

z; - z; cosa + 6,sina 
---tga+6,(1-tga) (6.3) 
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Hence, tgcl will be calculated with constant and proportional errors and, moreover, as would be 
expected, the constant error and the coefficient of proportionality were found to be equal to the angle 
of rotation of the telecamera about the perpendicular to the plane of motion. 

It is clear from formula (1.1) that the angle l3 can be reliably found even for small angles a by 
calculating the quantityya. We shall use formulae (6.2) when y1 = 2 

II t 
yo + 6,h + 6,zo = Y,zz-Y;z; 

k(Z; - z;) (6.4) 

If the resulting expression is compared with the first formula of (l.l), it can be seen that, when 
determining the angle p, additional constant and proportional errors also arise apart from the errors 
associated with the determination of the angle a. One of these arises due to the rotation of the telecamera 
about the vertical axis and is proportional to the ratio of the distance from the robot to the telecamera 
to the radius of the supporting cylinder. A second constant error is associated with the rotation of the 
telecamera about an axis perpendicular to the plane of motion. 

Formulae (6.3) and (6.4) can be proposed as a basis for aligning the position of the telecamera. 
However, even after this, certain random and systematic constant and proportional errors remain when 
determining the angles a and p. In order to elucidate the effect of systematic errors on the control 
process, we assume that the structure of the errors is linear with constant coefficients 

The chosen control law is such that proportional errors lead to a certain change in the amplification 
factors and, if the amplification factors are taken with sufficient margin, the effect of the proportional 
errors will be insignificant. 

The existence of constant errors leads to a state of affairs when an additional constant term arises 
in the last equation of system (2.1) and this equation takes the form 

aqqij + a,,& = c,u + c,6u - c2@ 

6u = k, 6, + k&i, + k,$ + k$p + k,6, 

Then, system (2.1) admits of the particular solution 

ci, = c18uIc2, a=:, p=o (6.5) 

as a consequence of which the control ensures the asymptotic stability of the equilibrium with respect 
to the angles a and l3, and the term (6.5) which compensates for the action of the constant components 
of the errors, is added to the angular velocity of the flywheel. In other words, the above-mentioned 
errors prevent one from guaranteeing that the angular velocity of the flywheel is equal to zero in the 
equilibrium position. Moreover, the magnitude (6.5) of the angular velocity of the flywheel can be used 
as a correction to the control in order to compensate for the effect of errors of the telecamera. 

7. RESULTS OF CALCULATIONS 

We select the following numerical values of the system parameters 

I = 1 m, m. = 3 kg, c, = -0.8 Nm/V, J, = 0.03 kg m* 

R = 0.05 m, h4 = 2 kg, c2 = 0.76 N m s, J = 0.297 kg m* 

a = 0.55 m, m = 3 kg, J, = lOA kg m*, Jo = 3.75 x 10e3 kg m2 

y = -10, u. = 12v 
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For these parameters we obtain the roots pI = -7.3sm2, p2 = -11.5~8, and the coefficients in formula 
(5.14) are found to be: a, = -3.6 V, aIs = -4.45 V. As a result, the domain of controllability of the linear 
system obtained is exceedingly large. For example, if /3 = & = b = 0, the value of the angle a can lie 
completely in the range from-n: to n, which is considerably wider than the range of its reasonable values 
of -El2 -C a -C x12. 

The criterion (4.6) is satisfied in the case of the chosen values of the system parameters. This means 
that the eigenvalues (3.9) can be chosen in such a way as to ensure that the coefficient k4 is equal to 
zero. With this aim. we select the constants (4.7), for example, to be the following 

ht = -15, h2 = -16, h3 = -17, h4 = -18, hs = -19 

Using formula (4X), we find the correction coefficiet? x = 0.834. Hence, the transient, corresponding 
to the case when the measurements of the quantity p can be invoked, is found to be quite fast. The 
corresponding amplification factors take the values 

k, = -0.816 105, k, = 0.101 IO’, k, = 0 

k, = -0.139 Y 105, k, = -0.337 i lo3 

If one drops the requirement that k3 = 0, the stabilization process can be made more quiescent. In 
particular, it is possible, for example, to take 

h, = -1, h, = -1.01, h, = -1.02, h, = -1.03, h, = -1.04 

The following amplification factors correspond to these characteristic exponents 

k, = -0.64 :~ 102, k, = 0.449 ‘j lo’, k, = 0.53 

k, = -0.144 :i 102, k, = -0.95 

We see that the amplification factor k4 only increases to a slight extent when the absolute values of the 
characteristic exponents are reduced. At the same time, the control intensity along the other coordinates 
decreases very noticeably. 

This research was supported financially by the Russian Foundation for Basic Research (01-01-00079, 
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